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3. Phys: condens. Malter 4 (1992) 4135-4147. Printed in the UK 

The mixed state of a superlattice of superconducting sheets 

S E Barnest 
LXqartement de Physique de la Matitre Conden&, Univenili de Genive, 24 quai E 
Ansennet, 1211 Geneva 4, Switzerland 

Reoeived 26 November 1991 

Abstract. We have investigated the mixed state of a superlattice of supermnducting 
sheels. which is a model for the cuprate supenandunor and the superlattices made kom 
them. W have also studied the relevant length scales. It is shown that only when the 
sepalation belween the sheets t is larger than A s  = A a / d  can the system be viewed as 
a mllection of separate sheets; here A& is lhe srreeoing length for a single sheet. It is 
argued that there are MW Abrikmnv lattices; one is associated with the mmponent d the 
field which b prallel to the sheets, while the s m n d  corresponds lo the field mmponenr 
perpendicular to the sheels. It is shom that the lwo lattioes interacl and can form a 
mmmensurate suucture with novel properties similar to those found experimenralty. 

1. Intmduction 

The vely anisotropic properties of the the high-temperature cuprate superconduc- 
mrs have led many to believe that, in essence, they consist of a twodimensional 
superlattice of superconducting sheets which are weakly Josephson coupled. 

In this paper the mixed state of such a 'superstack' of weakly coupled thin films will 
be investigated; this is a model for the cuprate superconductors themselves (see,for 
example, Dolan et nl 1989 and Bolle el 01 1991) and the superlattices (see Brunner 
et a1 1991 and Norton et al 1991) fabricated from them. The mixed state is defined 
as the state of a type I1 superconductor in which there exists one or more Abrikosov 
flux lattices. 

With a sufficiently large separation e between the sheets (see figure 1) the system 
must behave as a set of isolated sheets, while for a small enough separation the 
composite should behave like a bulk type I1 superconductor; this is for the situation 
when the field B is perpendicular to the sheets. Given a London penetration depth, 
A (intrinsic to the material of the sheets), and d, the thickness of the sheets, then 
the possible lengths are A' = ( f ? / d ) ' I 2 A  (a modified London penetration length) 
and A, = A 2 / d  (the screening length for a single sheet along with e itself). Only 
when f? > A, does the system behave like a collection of single sheets. When this 
inequality is not satisfied A' plays the role of the bulk London length. 

For the case when B is not perpendicular to the sheets it is widely assumed (see 
Ivlev and Kopnin 1991, and references therein) that, given e < A,,, the mixed state 
of such a superstack is equivalent to the similar state of a highly anisotropic uniform 

t Permanent address: Department of Physics, University of Miami, Coral Gables, FL 33124, USA. 
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The calculations reported here serve to illustrate the role of ~ r i o u s  length scales. . 
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I 

FIgum 1. n e  stack mnsists of superconducting sheets of lhickness d with a space e 
between them. In the formal calculations, the superconducting sheels are treated as if 
the sheets have no thickness, i.e. the limit d -+ 0 is taken whilst maintaining b e d  
current density, etc. 

superconductor (i.e. usually theories are constructed using the Landau-Ginzberg 
theory with a highly anisotropic mass tensor). Here, in section 5 it is argued that 
this description is not wen qualitatively correct. Rather, if the Josephson mupling is 
not too strong, there are two Abrikosov lattices; one, the parallel [nftice, is associated 
with the component of the field which is parallel to the sheets of the stack while the 
second, the perpendicular laflice, corresponds to the component perpendicular to the 
sheets. 

The model, introduced in section 3, is based upon the Landau-Ginzberg equa- 
tions. However, the superconductivity is confined to a set of thin sheets, i.e. it is 
highly non-uniform. 

The calculations are presented in section 4, 5 and 6. The Landau-Ginzberg cqua- 
tions for the superstack are solved in section 4 and the perpendicular and parallel 
values of B,, are calculated in section 5 and 6. The introduction, in section 6, of 
the Josephson coupling between the sheets brings another length A, (the Josephson 
depth) into the picture. The Josephson depth and A', the effective LDndon pen- 
etration depth, are related to the lower critical fields Bh and &,, in an obvious 
notation. 

It will be shown in section 7 that, because the normal cores of the perpendicular 
lattice suppress the local Josephson current, there is a coupling energy which corre- 
lates the perpendicular and parallel lattices. For sufficiently strong coupling the two 
lattices will form a commensurate structure. When this is the case then the coupling 
will (i) orientate the perpendicular lattice and (ii) possibly form chains; the latter 
effect in order to maintain commensurability between the two lattices. Such effects 
have been observed by Bolle et ai (1991). Section 8 contains the conclusions. 

2. One versus two Abrikosov lattices 

As stated in the introduction, it is widely assumed (see Ivlev and Kopnin 1991, and 
references therein) that the mixed state of the materials of interest corresponds to 
a highly anisotropic bur uniJom superconductor-usually theories are constructed 
using Landau-Ginzberg theory with a highly anisotropic mass tensor; such a theory 
implies the existence of a single Abrikosov lattice. By contrast, in the superstack 
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model LandauGmzberg theory is still assumed but the superconductivity is localized 
in sheets (i.e. it is highly non-uniform); it dl be argued that such a model predicts 
two Abrikosov lattices. 

The energy per unit length for a homogeneous anisotropic superconductor de- 
pends upon the angle between the field and the planes; - +oz/Xtz when they are 
perpendicular (where A' is the effective London penetration depth for the field per- 
pendicular to the sheets and q50 is the flux quantum) and - q50z/X'X, when they 
are parallel (where A, is the Josephson penetration depth). For intermediate angles 
Ivlev and Kopnin (IWI), for example, suggest that the appropriate dependence is an 
energy which varies as - X(B)q50z/X'2XJ, where Xz(B) = X'zsinzB+ XJ2 cos2, and 
B is the angle between the field and the a axis. If instead the superconductivity is 
localized in wry thin sheets then one is led to the idea of 'pancake' vortices strictly 
localized in the sheets and, as a fust estimate, the energy cnst of a vortex is simply 
given by the number of sheets it crosses, i.e. - q502/X,6 per sheet. 

In the limiting case A, --* CO the coupling between pancake vortices lying in differ- 
ent sheets is purely electromagnetic. This problem has been considered previously by 
Clem (1991). In the calculation presented in section 4, the problem of a superstack 
8 solved by considering a single sheet which iF repeated periodically using Fburier 
series for the z dependence of the various physical quantities. In order to consider 
the problem of the rigidity of a vortex, it is necessary to at least consider two sheets 
which are then repeated by the Rurier series techniques. Although the details are 
not given here, this problem has also been solved by the author. It is found that the 
energy cost for a vortex tilted by an an angle -45" is - (&:/X,,)(e/X,,) per vortex 
line per sheet; this differs from the result of Clem (1991). Whatever the merits of the 
two calculations, it is clear that there is a finite energy required to tilt the Abrikosov 
lattice and so, for sufficiently weak Josephson coupling when the field makes an ap- 
preciable angle to the z direction, it is always an advantage to establish two rather 
(than a single) Abrikosov lattices. 

In the presence of a Josephson coupling, the energy cost per unit length of a 
vortex parallel to the sheets is - &02/X'XJ, and the comparable energy per sheet is - q502t/X'XJ. The various lengths have fairly large uncertainties. For YBa2Cu,0 
it might be reasonable to take X - lo3 84 A, - lo4 - lo5 8, and d - 10 & 
whence A,, - lo5 4 so that A,' - 1010 A while X'X, - 1O1O 4 consequently the 
Josephson energy is larger. This need not be the case for the Bi and TI materials, 
and even more so for the superlattices themselves, for which the Josephson coupling 
will be much smaller. However, whatever the size of the Josephson coupling, even 
for a tilted single Abrikosov lattice there must still be essentially the Same currents 
associated with the parallel component of the magnetic field and hence a comparison 
of these energies is nor the relevant one. 

What is relevant is an estimation of the commensurability energy. The interaction 
between the two Abrikosov lattices tends to make them commensurate. The dominant 
energy for a weak Josephson coupling is discussed in section 7. The single Abrikosov 
lattice might be thought of as a special case in the limit that this commensurability 
energy is very large. Otherwise the picture of the commensurate lattices is a rich one 
in which some vortex lines tilt while others do not. 

When the component of the field in a given direction is less than the appropriate 
value of B,, for that direction, then the flux lattice must tilt. 
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3. The model 

In the presence of an isolared wrra at the origin and orientated in the I direction 
(i.e. perpendicular to the plane of the sheets) London's equation for the current 
density reads (Pearl 1%4, 1965, de Gennes 1989), 

C j = - ( A -  0 )  
4 T A 2  

where Q0 = q 5 , , / 2 ~ r  is the only finite component of 3, which represents the vortex. 
The sheets have a thickness d (< 10 ir, and are assumed sufficiently thin so that 

the current is uniform along the I axis. This is certainly the case if d < c, where E 
is the coherence length for the material which comprises the sheets. In the context 
of the high-T, cuprates, this should be identified with the coherence length (- 30 A) 
associated with the zy plane. The shorter length associated with the z direction (- d )  
is small in the present picture because this reflects the weakness of the Josephson 
coupling between the sheets, rather than the properties of the sheets themselves. 
However, it is sufficient to have d < A, since this is the shortest length over which 
the current can change appreciably; this condition is satisfied in the experiments on 
superlattices of which the author is aware. Given that the current is uniform h the 
z direction, it is natural to define the current per unit length on the sheet, 

J = d j  (2) 

whence, 

c 1  J = --(+ - A )  
4?F 

(3) 

where the effective penetration, or screening Iengfh, for a single sheet is 

A,, = A 2 / d .  (4) 

For a single sheet, 

(5) 
4n  1 curl curl A = curl R = -j = -6(r)(@ - A )  

C A,, 

where 6( z )  localizes the current in the film, which is now assumed to be indefinitely 
thin. The real thickness is easily accounted for as needed. The generalization for a 
superstack (i.e. for repeated superconducting sheets) is 

1 1 - V2A + - 6 ( r  - m1)A = - 6 ( r  - me)+ 
A,, A,, 

using curl curl A = -VZA, d i d  in the London gauge. Equation (6) constitutes the 
model, in the absence of Josephson coupling. 
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4. Calculation 

Adapting de Gennes (1989), the first step is to introduce a Fourier transform b r  the 
zy plane and a Fburier series for the z direction; the components are, 

0 A , = ~ d . J _ m _ d r I P b , d y A ( z , I I . n ) r  '2rnz/leiq.=+iq,y 

where e is the distance between the sheets of the stack A similar transform, with the 
label n contracted, is defined to be, 

The transform of the periodic source term 

+x6(2-me) 
m 

is 

+, = i(+o/q2)& x q 

where h is the unit vector in the z direction. 
With these definitions, the transform of (6) is, 

which is sufficient to determine the Fourier components. Solving gives 

This contains a sum of the form, 

It might be noted that for s -t 0 only the first term in the sum contributes (ie. 
S = ( l /q2)) .  Physically this limit amounts to an approximation in which all variations 
in the z direction are negligible. Using the full result (13) for the sum S, it is bund 
that 

This is one of the principal results for the superstack Josephson coupling between 
the sheets has been ignored since it is not relevant when the field is perpendicular to 
the sheets. 
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The analysis of this expression depends upon the size of e relative to Aeu. How- 
ever, whatever the magnitude of these two quantities, small distances are defined 
a, 

r < e  

which implies qe > 1,’whence coth + 1 and 

which is the same result as for a single thin film. If now 

e < A,, 

then automatically r < A,,, ie. qA., > 1, and the approximation, 

C J -- 
q - 4 7 4 3  

is valid. mi is, indeed, the expression appropriate for a single thii film However, 
this is not significant since r < A,, mrresponds to a b i t  for which the thin-film 
result is the same as for the bulk. This equation implies a current per unit length of 

per sheet. However, unlike the case for a single sheet, this result does not extend out 
to r - Ae,. Rather, for 

r > e  

it follows that coth -* 2 / q 4  which leads to 

where the efeclive, and measurable, London penetration depth is 

A’ = X ( e / d ) ’ l z .  (19) 

Apart from this renormalization of A, the result (18) is fully equivalent to that for a 
bulk type I1 superconductor. For small distances, such that r < A’, the non-screened 
result (17) still holds. It follows that for all distances such that r < A‘ 

per unit length per film. Still, for the limit that e < A,, but now with 

r > A’ 
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it follows kom (18) that, 

which is again h e  result for a bulk y p e  U superconductor. Notice that, given e < A,,, 
the relevant length scale is A' and not A,. 

The thin-film screening length, A,, only becomes relevant if 

e > A,, . 
In this case it follows that, 

J = -  "od r < A,, 
87r2A2r 

ie. the same result as (ZO), but now with a different range of validity. On the other 
hand when e > r > A, the relevant approximation is to take PA, to be small so 
that 

This reduces to 

which is the well known form for the distant current in B single sheet. Only when the 
more extreme inequality 

r > e  

is satisfied does three-dimensional screening come into play and (21) again becomes 
relevant. 

5. The lower critical field BA 

Using the results of the last section it is simple to determine BA, ie. the critical field 
for the formation of the perpendicular Abrikosov lattice when the applied field is 
perpendicular to the sheets. In the usual fashion, this is determined by the condition 
that a single yortex is stable, ie. that BAA4 = U, where U is the total energy cost 
of an isolated vortex, and M is the associated magnetic moment. 

For a superstack such that e < A,,, the bulk result applies and (see Pearl 1965), 

U - d(40/4?iA')21n (A'/[) (25) 

while M = 40d/4?r for both per sheet. Since both the energy and the moment are 
associated with currents flowing in a single sheet, the result is 

B i  - ( + o / ~ A ' 2 )  In (A'/[) (26) 
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which is the Same as for a buk type I1 material with a London penetration depth A'. 
Here (, the coherence length, is, as usual, the relevant smalldistance cut-off. 

In contrast, when f? > A,, the single sheet results we relevant. However, unlike 
for the single sheet, the integral for M does not diverge, since for a stack there is a 
cut-off at 1 when bulk behaviour for J again becomes relevant. The larger part of 
the integral is, 

For a sheet, the energy for a single vortex is 

U - d(&,/47rAf)*1n (A,,/() (W 
again per thin film. The only change in the energy, relative to (Z), is due to a change 
in the largedistance cut-off in the logarithm, which is now A,, rather than simply A. 
The ratio U / M  gives the result, 

( d / f ? )  (&/7rA'z) In (&E/<)) (29) 

ie. compared to the bulk result, the estimare for BA is smaller by a factor of roughly 
d/f?. Since for the cuprate superconductors themselves the spacing between the CuO 
bi-planes, f?, is much less that A,,, it is concluded that the superstack model for this 
system predicts bulk type I1 superconductor behaviour when the field is perpendicular 
to the sheets. However, superlattices made from these materials might be made in 
which f? > A, = A a / d ,  whence BA is reduced compared to the &independent bulk 
result by a factor of d / t .  The measurement of BA versus e therefore represents a 
direct method of measuring AeE. 

As usual, provided B < BA, the problem of the Abrikosov lattice can be con- 
sidered in terms of a set of interacting single vortices. Ignoring any anisotropy of 
the superconductivity in the zy plane, the lattice constant a of the vortex lattice is 
determined by a relationship of the form 

0 - (+o/B)1'2 (30) 

where B is the magnitude of the applied field. 

6. The lower critical field E!, 

In the absence of Josephson coupling behveen the sheets of the stack, for B parallel 
to the sheets, the value of B!, is zero. 

For any other orientation the perpendicular component will penetrate the sample 
for all fields. An Abrikosov lattice will form on the z y  plane at 

E,, = BA / cos 0 (31) 

ie. when B, = B cos 0 exceeds the critical field BA. Here 0 is the angle that 
the field makes with the z axis. Since the parallel field between the sheets of the 
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stack is constant, there can be no dependence of the energy upon orientation of 
the Abrikosov lattice, which is therefore arbitrary and triangular with a constant 
a - ( 4 0 / B 1 ) 1 / z  = (+o/Bcos6)1/z. 

Even weak Josephson coupling between the sheets of the stack modifies this 
picture. The local curenr dewily, in the z direction (see, for example, Barone and 
Paterno 1982) is 

j, = j o s h  + (32) 

where 4 is the phase difference of the order parameters between the two sheets of 
the stack of interest, and j ,  is the critical current density. The energy per unir area 
corresponding to this is, 

e (33) 

where A, is the Josephson penerrarion depth. That such an expression is valid for the 
coupling between any two sheets of the stack simply amounts to a parametrization of 
the relevant free energy. 

From the theory of long Josephson junctions the predictions for this form for the 
free energy are !mown. A finite parallel field penetrates a distance A, from the edge 
and a distance - A' into the stack. An estimate for corresponds to the field for 
which there is one flux quantum in this area, Le., 

B!] - &/A'AJ. (34) 

A more accurate estimate is obtained by comparing the energy Fl for an isolated 
vortex with magnetic energy M B $  where the magnetization for an isolated linear 
flux line M = 4,/47r per unit length. This energy is 

where for an isolated vortex 

+ =  2sin-'sech(y/XJ). 

The integral gives 

h .  m h .  
e e 

m Fl = 4 ; ~ , l ~ d y s e c h ~ X  h .  = 4 - ~ ~ A , ~ ~ d y s e c h ~ y = 8 - ~ , A ,  

whence 

= F i / ( 4 0 / 4 ~ )  = (32rh/+oe)j~Aj 

which can be equated to the previous estimate 

(37) 
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This gNes 

j ,  - C$0c/32A‘A: (40) 

as a useful relationship between the Josephson current density and the measurable 
quantities A‘ and A,. Eliminating the lengths in favour of fields gives 

It might be noted that the energy of a free vortex parallel to the sheets is 4,,02/4X’AJ, 
and it does not have any logarithmic dependence upon the size of the system. It 
follows that Kosterlitz-Thouless considerations are nor relevant for vortices with this 
orientation. 

When the applied field is parallel to the sheets then there wit1 be a non-symmetric 
Abrikosov lattice. However the effect is one of scales. Intrinsic pinning favours the 
alignment of the rows of the lattice so that they are parallel to the plane of the sheets. 
?he two lattice spacings are 

all - (A,/A‘)’’* ( ~ o / B ) ’ ’ 2  U’ - (A’/Aj)’’O2 (C$o/B)”2 (42) 

so that d a L  - (C$,/B). 

7. Interaction behveen Abrikosov lattices 

When both B sin 0 > and B cos 8 > BA, then two Abrikosov vortex lattices 
can exist; necessarily there are interactions between them which tend to make these 
lattices commensurate. The conventional picture of an anisotropic superconductor 
with tilted vortices corresponds to the case when these lattices are commensurate and 
have the same wavelength. This is a special case which will certainly not have the 
lowest free energy for weakly Josephson coupled sheets. 

Of the several possibilities the largest interaction which the author has found is 
the suppression of the Josephson coupling by the normal core of the vortices in the 
z direction. 

The estimation of this energy goes as follows: the energy per unit area per pair 
of sheets is, again 

e (43) 

For any modest field B > €$ the field between the sheets is essentially a constant. 
The pairs of sheets are of two types; those which have vortices between them and 
those which have not If there are no vortices between a pair of sheets then the phase 
difference 4 between adjacent sheets remains in the range 0 to 2rr. For a pair of 
sheets which contain a line of vortices, to a good approximation (i.e. for B > 

C$ = ky k = ( 2 e d M / h c ) B  (44) 
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where d ,  - 2X' is the magnetic thickness. It follows, that the energy associated with 
this pair of sheets is 

2 (45) 

The net energy per sheet per vortex, U,,, is the energy gain obtained by suppressing 
the Josephson current in an area - re2 in a region where the Josephson coupling 
energy is a maximum in the positive sense, ie., 

Af = nez2(h /e ) j , .  (46) 

This gives an energy per vortex per sheet of 

where the term in the parentheses is an energy per sheet of a single vortex, which 
can be identified with the Kosterlitz-Thouless temperature TiT for a single sheet 
(Beasley ef QI 1979). Therefore the commensurability energy per sheet per wrtex can 
be written in the form 

Pp = TICSTKT--- 7r3 € 
d A, A,' 

With realistic estimates A,, is quite large, at least - lop& and the present 
model of superconducting stacks might be expected to have a transition temperature 
related to GT ,except renormalied by the Josephson interactions between planes 
(TiT - 1 em /Ae, which is - 1000 K for A, - 10 pm!). Details of these ideas 
will be presented elsewhere. Here we will make the reasonable assumption that 
the superconductive transition temperature T, - QT. Since it is also assumed that 
T - T,, it is necessary for the pinning energy to be of the order of GT for it to be 
considered appreciable. 

Since all of the ratios in the above, except for E/d ,  are small, E; .is small compared 
to T or TKT. However, this must be multiplied by factors which arse because of the 
effective 'coherence lengths' associated with the Abrikosov lattices. These are defined 
in terms of the distance over which the two lattices remain in synchronization. The 
relevant lengths are defined to be LL for the zy plane and Lll for the the z direction. 
The total number of sheets involved is - Lll/aL and the total number of vurtices is - ( L L / a ) ' ,  so the total commensurability energy is 

An estimate of this quantity is very much dependent on the quality of the sample. 
(It might be noted that the abovedefined coherence lengths are not the same as 
those associated with long-range order for either of the Abrikosov lattices. For a 
reasonable commensurability potential it is to be expected that the lattices remain in 
synchronization for much greater distances than the distances over which long-range 
order is maintained.) 
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Clearly when this interaction is important then the two lattices tend to be com- 
mensurate. A full discussion of the possible commensurabilities is lengthy. The 
simplest case is to have 

na = mall 

where n and m are integers. This expresses the idea that the vortices parallel to the 
sheets match up with the rows of the triangular lattice. Clearly the effect of these 
interactions is to orientate the Abrikosov lattice in the r y  plane relative to the vortex 
lines which run parallel to the sheets. The orientation is not correlated to the a and 
b axes of the underlying lattice (except for the passibility that the pinning reflects this 
lattice). This is in accord with the experiments of Bolle a al (1591). 

When this condition is not satisfied, or satisfied only with large numbers, it be- 
comes energetically advantageous to add ‘extra’ vortices to the ‘rows’ defined by the 
prallel lattice in order to maintain commensurability (with low numbers). Thk is a 
natural explanation for the ‘chains’ observed in the experiments of Bolle et a1 (1991). 

8, Conclusions 

It is widely assumed that a stack of Josephson-coupled superconducting planes-a 
superstack-n be treated as a highly anisotropic superconductor. Whatever the 
angle the applied field makes with the principal axes, in such a treatment of the 
mixed state there is a single Abrikasov lattice. In general the vortices are highly 
anisotropic. It has been shown here that a superstack (i.e. a superlattice made 
of Josephson-coupled sheets of superconductor) has two Abr&mv lattices when 
the field is not close to one of the principal axes. While these ideas have been 
developed in the context of superlattices, it is also envisaged that the superconducting 
cuprates hmelves,  ag. YBa,C%0,-6, represent the simplest case corresponding to 
a superstack 

It has been shown that the crossover from two-dimensional, single-sheet be- 
haviour, to three-dimensional bulk type I1 superconductor properties occurs when 
the separation between the sheets, e, is of the order of A,, the screening length for 
a single sheet (the length, via k,T, - 4g/Aes, determines the Kosterlia-Thouless 
temperature). The observable London penetration depth is A’ = ( l / d ) l / z A ,  where 
d is the thickness of the sheets and X is the intrinsic penetration depth. 

Corresponding to the two Abrikosov lattices are two Bcl values; one (perhaps - 100 G for YBa,Cu,0,-6) for the field parallel to the sheets and another B& (- 
1 G) for the perpendicular direction. For a field in an arbitraly direction there remain 
two dues  of Bel associated with the establishment of the two Abrikosov lattices, e.g. 
if the parallel component of E exceeds E!l then the parallel Abrikosov lattice forms; 
the perpendicular lattice forms independently only when the perpendicular component 
exceeds BA. For weak Josephson coupling B!, ex BA, as observed experimentally. 

There is an interaction between the two Abrikosov lattices and this tends to favour 
commensurability. Close to commensurability, or when this can only be attained 
in high order, it becomes advantageous for extra flux to be accommodated by the 
formation of chains on the surface of the sheets with the chains coinciding with the 
centre of vortices parallel to the sheets. 

It would appear that this description is compatible with recent vortex decoration 
experiments of Bolle et al (1991). 
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